
WHAT YOUR COLLEAGUES ARE SAYING . . .
“Are you teaching operations, fractions or functions? If so, Harris has some 

gorgeous ideas for you—showing us the ways they are all ‘figure-out-able’ 

with mathematical reasoning.” 

Jo Boaler  

Nomellini-Olivier Professor of Education, Stanford University  

Stanford, CA 

 

“Developing Mathematical Reasoning is every teacher’s guide to breaking 

away from algorithmic-centered teaching. From the three distortions of 

mathematics to the hierarchies of mathematical reasoning, Harris helps 

us understand how math and math teaching have become entangled in 

a tension between algorithms and reasoning, and then shows us how to 

untangle this tension through a series of real classroom examples. In so 

doing, Harris shows us that math is, actually, ‘figure-out-able.’” 

Peter Liljedahl   
Professor of Mathematics Education, Simon Fraser University  

Vancouver, Canada 

“Harris explores the limitations of an algorithm-centered classroom and 

emphasizes the need for true mathematical reasoning. By presenting a 

hierarchy of reasoning domains and advocating for a strategy-centered 

approach, this book equips educators with vital tools to empower students 

and deepen their understanding of mathematics.”

Graham Fletcher 
Math Specialist 

Atlanta, GA

“Chock full of real stories about real people engaging with real math, 

Developing Mathematical Reasoning lives up to its title. Harris beautifully 

empowers educators with practical insights and steps to help students 

become true mathematical thinkers, not just mimickers—essential for a 

world that needs confident reasoners.” 

James Tanton  

The Global Math Project  

Paradise Valley, AZ 
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“This book is a gem that should be read by every teacher of mathematics. 

Harris offers a K–12 continuum of narratives from classrooms and builds a 

strong argument for why algorithms should not be the focus of instruction if 

we truly want to produce numerate, mathematically empowered thinkers.” 

Catherine Fosnot  
CEO and President, New Perspectives on Learning  

Vero Beach, FL 

 

“This book is a gift for all teachers, especially those of us raised in the era 

of algorithms and rote memorization. Harris walks you through how to 

help students reason their way to understand math conceptually. With 

each step in the progression, you learn how to help students graduate to 

more sophisticated ways of thinking and math-ing.” 

Liesl McConchie  
Author of Math With the Brain in Mind   

San Diego, CA  

 

“From the very first page, this book grabbed me and refused to let go. 

Harris’s insights into the challenges of learning mathematics, as well as 

her joyful explanations of what can be possible when we have the right 

attitude and mindset, are essential for today’s educators to absorb and 

integrate into their classrooms.” 

Eddie Woo  
Professor of Practice in Mathematics Education, University of Sydney  

Sydney, New South Wales, Australia 

 

“Harris critiques traditional math instruction by highlighting three key 

distortions about what math truly is. She encourages educators to move 

beyond algorithm repetition and instead promote real mathematical 

reasoning and problem solving, raising expectations and fostering deeper 

understanding for all students. A transformative read for anyone looking 

to elevate math instruction.” 

Pamela Seda  

Founder and CEO, Seda Educational Consulting, LLC  

Atlanta, GA 

 

“Harris takes you on an adventure that fast-tracks you along her journey 

of discovering how students learn best. A must-read for anyone wanting 

to open students’ horizons and get them to use what they already know 

to tackle new problems.” 

Christopher Hogbin  

Founder, Number Hive  

Canberra, ACT, Australia 
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“This is a timely and, ultimately, brave book about mathematics. Harris 

shines a light on ineffective practices and reminds us that math is so 

much more than memorized procedures. Her insights may ruffle some 

feathers about long held beliefs on math instruction. But the invitation to 

reach more deeply into real mathematics will open many eyes.” 

John R. Tapper  
CEO & Founder, All Learners Network  

Burlington, VT 

 

“This book is a must-have! I grew up in the trap of the algorithm. I made it 

through school with good math grades because I was a good rule follower. 

It wasn’t until I was getting my master’s degree that I learned I didn’t 

know mathematics, I was just good at arithmetic.” 

Christina Tondevold  
The Recovering Traditionalist  

Orofino, ID 

 

“Harris is not only a dear friend but also an incredible advocate for teaching 

math in a way that truly empowers students. In this book, she beautifully 

abstracts the essence of math, guiding teachers on how to help students 

deeply understand concepts rather than just memorize procedures. Harris 

has always been a brilliant resource for educators, helping them uncover 

the ‘why’ behind the math, and this book is a testament to her passion 

and expertise.” 

India White  
TEDxSpeaker, Author, National Ed Consultants   

Brooksville, FL

Developing Mathematical Reasoning makes the bold assertion that math 

instruction should teach students to think mathematically. In this day and 

age when quick answers are coming quicker than ever, Pamela Weber Harris 

encourages us to slow down. Using concrete examples and vignettes, Harris 

demonstrates how traditional teaching methods tend to short-change 

development by pushing procedural thinking. This book teaches how to 

navigate around those traps and build classrooms rich with reasoning.

David Woodward
Founder and President, Forefront Education

Boulder, CO 
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Preface: Math Is 
Math. Or at Least 

It Should Be.
Have you ever had a moment when your understanding of 
something shifted dramatically? More specifically, when you 
didn’t realize there was even a different way to think? Have 
you ever rewatched a film or television show for children as an 
adult, and realized a line or a character or a story means some-
thing completely different to you now?

I had that experience with math.

Math is a tricky thing to talk about.

Partially because math is not supposed to be tricky to 
talk about.

Math is the universal language. The words we use might be 
different across times and cultures, but the relationships, the 
equations—those stay the same. Math is supposed to be the 
unchanging bedrock of science and technology, the one thing 
everyone can agree on. In any language, 2 + 2 = 4 is as uncon-
troversial a statement as it is possible to make.

The language we use to describe math has changed dramatically  
over the course of human history. The shift from a system like Roman 
numerals to our modern base ten place system, the invention of zero, 
irrational, and imaginary numbers, have all dramatically transformed 

mathematics. Modern mathematicians are still exploring better 
ways, looking for the next big jump in the way we describe and do 

math. And that’s all beyond the scope of this conversation.

As uncounted numbers of frustrated parents have exclaimed, 
“You can’t change math! Math is math!”

Unfortunately, that is only correct if what we learned as math 
actually was math.
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What if math is actually something different than what many 
of us thought? What if it has actually been obscured, misrepre-
sented, and hidden behind shortcuts and tricks until it is practi-
cally surrounded by half-truths, overgeneralizations, accidental 
lies, and unconnected trivia, such that our perspective of math 
can be so damaged we don’t understand what math even is? 
And then we teach the next generation and pass on those mis-
conceptions, and they teach the next, and so on. It’s like a bad 
game of telephone, except the original message was wrong to 
begin with. 

I’ve found that this miscommunication spiral has resulted 
broadly in three distinct distortions that affect how many peo-
ple view mathematics and the teaching of it. The result is that 
even though there are very different ways people all over the 
world perceive math, many don’t realize there is another way, 
let alone multiple ways.

Note that these distortions are not binary. Through their life experiences 
some people are dealing with more distorted math than others, while still 

others might be dealing with very little distortion at all. However, my 
experience in 40 years of teaching suggests that the vast majority of people, 

students or not, are dealing profoundly with one of the following three.

THE THREE DISTORTIONS

THE FIRST DISTORTION: MATH IS NOT  
FIGURE-OUT-ABLE, IT’S ROTE-MEMORIZABLE

“Are these the problems we did on Tuesday, or the ones from 
Wednesday?”

“Is this where we cross multiply and divide or find a common 
denominator? Or cross cancel?”

“I’ve got this far. What’s the next step?”

“6 times 8, like the garden gate, is made of sticks so it’s 56. . . . 
Wait. . . .”

“If I put my fingers up like this, then it’s these fingers and those, 
so 9 × 7 is 6 and 3, 63.”

“Does slope go here in the formula? Do I have the right 
formula?”

“Since math is about memorizing all of these things, I will help 
students memorize them with mnemonics, stories, and songs.”
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Under this first distortion, mathematics is an arbitrary set of 
rules and procedures (such as algorithms). To do well, students 
must decide what to do, in the right order, and copy the teacher’s 
examples. The why, the background, or the connection to other 
mathematics doesn’t make a difference in getting right answers, 
so that discussion is irrelevant. “Please just tell me what to do 
and let me get my homework done.” This distortion holds that 
math has little to nothing to do with your life’s experiences.

Some of you read this and nod, “Yes, that’s what math is. If my 
students do this, they will be successful. If they don’t have good 
memories, they won’t do well. If they don’t do well, they might 
have math anxiety, they won’t pursue STEM fields. That’s just 
how the world works.”

This was me.

To be clear, I was good at this conception of math. I didn’t become 
a high school math teacher because I struggled with the subject. 
I excelled at thinking about math this way. I excelled at teaching it.

Then I found a better way. To my delight (once I got over the 
existential crisis), I discovered that students struggling with 
memory can be reached. That students who appear unwilling 
to exert themselves will self-motivate if the distortions are 
removed. That students not struggling to mimic can dive deeper 
and soar higher.

THE SECOND DISTORTION: MATH IS FIGURE-
OUT-ABLE FOR ME, BUT NOT FOR EVERYONE

“I mean, you could do all of those steps, but 99 + 47 is just like 
100 + 46.”

“Why would you go to all that effort? Plainly, 1
2

 of 3
5

 is just  
1.5
5

, so 3
10

.”

“Why do I have to show those steps? It’s just obvious.”

“I’m not sure why no one else is just figuring these out. Maybe 
they need the steps.”

“I guess I have the math gene. I don’t know how to help people 
without the math gene think like I do.”

“I do things in my head, but I know I’m supposed to teach the 
rules and steps. That’s what you do.”

Under the second distortion, math is figure-out-able, but for 
some reason not for everyone. Math-ing means to use what 
they know to reason about new things. Someone who is under 
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the spell of the second distortion believes that “I can add to my 
repertoire and keep building because it all makes sense. I do 
not have to wait until someone shows me a rule. But for some 
reason, other people can’t or won’t.”

Many with this distortion were taught by well-meaning peo-
ple with the first distortion. And they thought that teaching 
was ridiculous, nonsensically inefficient, or at best not needed. 
They watched teachers conduct sing-alongs and teach rhymes 
to memorize algorithms, wondering all the time what in the 
world any of this had to do with math.

This was my eldest son’s experience, who upon being taught a 
subtraction algorithm in first grade thought it was unnecessar-
ily complicated and invented his own. This is using 7 × 7 = 49 to 
reason that 8 × 7 = 49 + 7 = 56. This is reasoning about the equa-
tion of a new function using the equation of another function 
without starting from scratch with a formula.

To fit the definition of this distortion, this reasoning ability is 
gained in spite of how someone was taught, not because of it.

The problems this distortion cause become most obvious when 
it is time for this person to turn around and teach math. They 
learned real math, but didn’t realize it was in spite of how they 
were taught, not because of it. They teach their students the 
same way they were taught. Some students “get it” the way they 
did, but most don’t. Many assume at this point the difference 
must be that of innate ability, that the students who get it have 
“the math gene,” and those without, don’t. 

Sometimes when I discuss these three distortions, people say, “I want to have 
the second distortion.” But remember, this is a distortion because people  

under this distortion do not realize they can purposefully teach  
what they actually did naturally while their teacher was drilling  

step-by-step procedures. Of course, we all wish we had the natural talent to 
recognize mathematical patterns without being intentionally taught them,  

but we can’t invent natural talent. What we can do is teach the real  
math-ing to students instead of the fake math of memorizing and mimicking.

THE THIRD DISTORTION: MATH IS  
FIGURE-OUT-ABLE, BUT NOT FOR ME

“I still don’t understand. I think I should be able to understand, 
but this seems really random.”

“Yes, I could do what you’re telling me. But no, I don’t want to 
just do the steps because it doesn’t make sense.”
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“I mean, I could just try to memorize and do what you’re saying, 
but I know I’ll mix it up because I don’t get it.”

“Math is hard to understand. I’ll do my best to clearly explain 
the parts I get and be patient to explain as many times as 
needed.”

These people think math should make sense. They should be 
able to figure out what to do because memorizing what is arbi-
trary doesn’t work for them. They have a sense that math is not 
arbitrary but, for whatever reason, don’t make the connections 
the same way people under the second distortion do. Some 
students under this third distortion believe their teachers are 
deliberately holding back, deliberately not explaining the math.

Because math is so often presented as something to rote- 
memorize, these students are left to figure it out on their own. 
These students often abandon their reasoning when it doesn’t 
match what the teacher is doing, assuming that reasoning must 
be wrong. The algorithms work against their intuition, invali-
dating their thinking.

Rote-memorize: to commit a fact to memory independent of the surrounding 
context that explains why that fact is true. For example, memorizing the 

names of capital cities with flash cards or memorizing multiplication 
tables without building the accompanying Multiplicative Reasoning that 

explains and justifies why the multiplication table is the way it is.

Math starts looking like a bad magic trick. Any piece of math—
subtraction, the Pythagorean Theorem, pi, the slope-intercept 
equation—all might as well be ink blots to memorize, because 
none of them make any sense. 

The rest of the book will illustrate how algorithms  
work against intuition.

These students are stymied when 7 × 8 = 56 makes as much 
internal sense as pineapple times automobile equals tiger. 
They try to memorize the songs and pictures and sayings, but 
they know they’re not relevant. Knowing 7 × 7 = 49 is of no help  
learning 7 × 8 = 56, because there is no connection between 
pineapple times automobile equals tiger and pineapple times 
airplane equals lion.

Many, many people I’ve talked to about “memorizing  
their multiplication tables” saw them exactly this 

ridiculously. Disconnected and meaningless.
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Given that reality, many under this distortion disengage from 
the learning as a defense mechanism. They invest less emo-
tionally, to soften the repeated shaming that not understanding 
brings. They succumb to “Just tell me how to do it; I’ll fail at that, 
and we can move on.”

The truth is that often their teachers are operating under one of 
these three distortions. Individuals working under the first dis-
tortion don’t know math is figure-out-able, and so understand-
ably won’t teach it that way. Those under the second distortion 
know math is figure-out-able, but don’t know how to teach it 
that way. Finally, those dealing with the third distortion never 
felt like they succeeded learning math themselves. They teach 
the way they were taught, hoping their students will figure it 
out where they didn’t. Usually while stressing about it. A lot.

TRY IT

Consider which of these distortions resonates with you 
or with your experience as a student. Consider how the lens you’ve 
had may have colored your view of mathematics or mathematics  
teaching.

THE REALITY: MATH IS  
FIGURE-OUT-ABLE FOR EVERYONE
Real math, math-ing, is not trivial. It is not obvious. It is not sim-
ple. But it can be taught.

In my 30 years in math education, the one truth that has been 
reinforced over and over again is that everyone can do more 
real math than fake math. Everyone can do more math when 
that math is built on what they already know rather than shoe-
horned on the backs of contextless rote-memorization. In other 
words, everyone can math. Everyone can have their horizons 
open up and have more choices.

What does it mean to “math”? Real math, doing real mathematics,  
begs a verb like math-ing. Deborah Crayton has coined the term  

math-er. “Readers read. Writers write. Mathers math” (Crayton, 2026).  
Cathy Fosnot uses mathematizing (Fosnot & Dolk, 2001, p. 4).  

Math-ing or mathematizing as a verb describes the mental  
actions that mathematicians do. See Chapter 1 for more  

about what this means. 
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The first distortion is inherently limiting. The mountain of facts 
and steps to memorize become too much. Learners can’t keep it 
all straight or use any of it to reason about new things. For many, 
this happens as they move into long division, fractions, or algebra.

People under the second distortion usually make it the farthest. 
But how much more could they have learned faster if their 
growth were assisted by their teacher, instead of having to fig-
ure it out on their own? How many more people could join them 
in these STEM fields if they were actually taught real math-ing?

When helped to math in a real way, people who were under the 
third distortion gain the confidence to invest emotionally again 
because their effort is rewarded. Frustration and anxiety van-
ish into comprehension and proficiency. They know they can 
understand, and indeed they do.

In university classes and in-service workshops I lead, when I get 
people math-ing, many for the first time, I get these reactions:

•	 First distortion: Whoa, I did that. That was my thinking. 
Wait, we can teach math this way?

•	 Second distortion: Yes, that’s what I’ve been doing in my 
head, but now I’m seeing that I can teach kids to do what 
I’ve been doing. Cool.

•	 Third distortion: Hallelujah—I knew I could understand! 
Now I can help my kids math with understanding too.

TRY IT

By acknowledging the way you viewed the nature of doing 
and teaching mathematics, you can choose today to align your 
teaching with what you actually believe.

Take this quiz online:

It is reproduced on the next page.

https://qrs.ly/x1g41d1

To read a QR code, you must have a smartphone or tablet with a 
camera. We recommend that you download a QR code reader app that 
is made specifically for your phone or tablet brand.
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The Perspective Quiz
What did you think it means to do and teach mathematics?

When you think about learning mathematics as a child, do you . . .

A. Break out in a sweat, get nervous, and wonder if you’ll 
remember how to do the problems?

B. Smile, remembering some fun problems you worked on and 
patterns you found that helped you make sense of problems?

C. Feel cheated, like you know you could have learned more and done 
better if your teachers would have explained more, or better?

D. Remember knowing that if you just practiced a lot, you could 
remember what to do when?

If your childhood friend had asked you a mathematics question, you 
would have . . .

A. Clearly told them the rule and the steps to do the problems or 
looked it up in a textbook or online help.

B. Told them they will have to ask someone else because you never 
did understand how to do those problems.

C. Looked at the problems to see what relationships you could 
use to solve them, but then showed your friend the steps you 
learned in school.

If you had missed a day of school, you would have . . .

A. Looked at the missed assignment, confident that you could 
probably figure out the answers to the problems by thinking 
logically about them.

B. Waited until the teacher showed you the rule and the steps to 
solve the problems.

C. Tried to figure out how to solve the problems, but if you couldn’t 
readily, asked the teacher to explain what was happening and why, 
so that you could understand how to solve the problems.

If you didn’t understand a teacher’s explanation, you thought that . . .

A. It might be your fault, but maybe you just were not a math person.

B. You could sit with the problems, think about them, and figure 
out a way to make sense of them.

C. You needed to see the steps again and practice some more.
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When a teacher began to explain the lesson for the day, you  
hoped . . .

A. The teacher would help you understand what it all meant and 
why because you knew then you had a chance of getting it 
right. If you didn’t understand, you might get correct answers 
today, but you wouldn’t be able to hang on to them without 
understanding.

B. The teacher would just tell you what to do and how. “Give me 
the steps and let me practice them. Please don’t tell me why or 
give me more than one way.”

C. You’d have a chance to play with the concept, the numbers. You 
wanted to try your hand at solving the problems on your own. If 
the teacher made you mimic their steps but you didn’t need to, 
that was frustrating.

A teacher said, “Show me your work.” What you heard was . . . 

A. Use what you know, how you understand what’s going on, to 
make sense of the problem. Then write something on paper, 
probably what the teacher had shown, because you may not 
know how to write down what was happening in your head.

B. Copy exactly the steps that you were shown in the right order. 
Practicing the correct steps in the correct order is the work—
that’s what it means to do mathematics.

C. Show me that you understand what the teacher was asking. 
If you did not understand, you didn’t want to just do what the 
teacher had shown because then you knew you wouldn’t be able 
to do it again. It didn’t make enough sense for you to own it.

FREQUENTLY ASKED QUESTIONS

Q: What if none of these distortions feels like they apply to me?

A: First, remember that these descriptions are generalizations 
and not meant to describe any one person exactly. Second, many 
people feel like they’ve changed at some point. They feel like they 
started out believing that math made sense and that they were 
capable of reasoning through it and then later found themselves sty-
mied. For example, This year’s math isn’t making sense like last year’s 

(Continued)
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ABOUT THIS BOOK
Chapter 1 lays out how the implementation of algorithm- 
centered math education today, its methodology and goals, are 
often at cross purposes with the true nature of mathematics 
and doing mathematics. It then goes deeper into how the pro-
liferation of algorithm-centered teaching is largely responsible 
for these issues, and that understanding those issues presents 
the best opportunity for improving math education. When we 
understand the nature of mathematics, we can mentor students 
to math like mathematicians.

Chapter 2 introduces the hierarchy of mathematical reasonings 
essential to the learning and progress of all mathematics stu-
dents. It goes through the major domains of reasoning: Counting, 
Additive, Multiplicative, Proportional, and Functional, laying out 
how they build off each other and represent tiers of increasingly 
sophisticated thinking. It introduces sophistication as a descrip-
tor of the thought processes used when solving math problems. 
This term is needed because although it includes ideas of speed 
and efficiency, it also includes the magnitude and complexity 
of mathematical relationships in use, which neither speed nor 
efficiency denote. The chapter will go into this topic in far more 
depth, but I want to note here that the term sophistication as it is 

did, or I thought I was a math person, but I guess not. Many students 
begin their schooling with a clearer idea of what math is than they 
have by the end of their first multiplication/fraction/long division 
unit. They then end up under the first and second distortions. You 
could use this discussion to understand why this global conversation 
about mathematics education is so complicated, tricky, and subtle, 
because many are coming from these different distortions. The 
most important part of this discussion is to point us all to real math-
ing. The three distortions are frameworks that suggest why people 
might disagree about how mathematics should be best taught.

Q: What if my teachers taught me conceptually, and now I teach 
conceptually too? I don’t seem to fit your three scenarios.

A: Give the rest of this book a read. If you get to the end, and sure 
enough, your teachers and you approach teaching mathematics 
as developing a hierarchy of reasonings that don’t rely on mimick-
ing any algorithms and that every single one of your students can 
learn math this way—then, fantastic. You are one of the lucky few. 
Otherwise, you might be dealing with the second distortion.

(Continued)
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used in this book is never a value judgment of a person or their 
thoughts. It is only used as a relative measuring stick to place 
where a given method of solving a problem falls on the growth 
continuum. A student currently developing in the Counting 
Strategies domain of reasoning is not better or more valuable 
than a student developing Functional Reasoning. They are sim-
ply at different stages of development.

Chapters 3–6 each define and illustrate one reasoning domain 
and how rote-memorizing and mimicking algorithms can trap 
students into using less sophisticated reasoning than the prob-
lems call for, therefore limiting students’ reasoning growth. Each 
includes a detailed, step-by-step walkthrough of at least one com-
monly used algorithm and an explanation of how at each step it 
can undermine students’ opportunity to grow their mathemat-
ical reasoning ability. These chapters illustrate the major math-
ematical strategies to develop in place of those algorithms and 
discuss the advantages the strategy-centered approach brings. 
These advantages include an often faster, almost always longer 
lasting, and more complete understanding of content. 

As used in this book, the term mathematical reasoning does not 
mean just a general ability to think. This is not a fuzzy, “think 
better” approach that doesn’t include doing the math and get-
ting results. Mathematical reasoning is about building stronger 
brains and expects more, not less, from students, giving them 
the tools to actually be successful at math-ing. It demands 
increasing sophistication of strategy. This means meeting stu-
dents where they are, and then helping them develop from 
there. For example, students will not only know their multi-
plication facts, they will actually own them and be able to use 
the relationships in problems. It includes content-specific mile-
stones such as understanding of integer addition and subtrac-
tion, multiplication of fractions, and so forth.

The final chapter, Chapter 7, answers the question, If mathemat-
ics teaching is not all about repeating the steps of algorithms, 
then what is it? The chapter outlines steps teachers can take to 
improve their own and their students’ mathematical reasoning 
ability regardless of their current reasoning level or what con-
tent they need to teach.

For the content you teach, you can work to solve problems using 
what you know and learn the major models and strategies 
for that content. You can work to elicit and represent student 
thinking, making thinking visible, point-at-able, and discuss-
able. Lastly, you can work on high-leverage teacher moves and 
sequencing tasks, with an eye toward moving the math forward 
and meeting all students’ needs.
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Each chapter includes tips and FAQs throughout, as well as 
actions the reader can take—either personal exercises or things 
to try in class.

Corwin and I will be publishing four additional grade-specific 
companion books (K–2, 3–5, 6–8, and 9–12) on a six-month cadence 
once this book is released, which will offer more ideas, more prac-
tice, and more practical advice, concentrated specifically on each 
grade band. These books will be complementary to this anchor 
volume, which we believe is necessary to set the foundation of 
the discussion on developing mathematical reasoning.

FOUNDATIONS 
All of the ideas, concepts, methods, and proposals for how to 
teach more students more math contained in this book have 
their foundation in 30 years of study and classroom-based 
research. Development of Mathematical Reasoning is the result of 
synthesizing research and personal experimentation with 
teachers and students in real classrooms to find what works and 
what doesn’t—what cultivates real understanding versus what 
gets quick answers at the cost of long-term development.

My work is influenced by that of Fosnot and Dolk (2001) in 
their Young Mathematicians at Work series and Fosnot’s Contexts 
for Learning, which showed me children reasoning about con-
tent and how to get them to do it; Jean Piaget (1896–1980), the 
founder of cognitive development; Hans Freudenthal and the 
Freudenthal Institute in the Netherlands and their Realistic 
Mathematics Education philosophy; Constance Kamii and Ann 
Dominick, who published “The Harmful Effects of Algorithms” 
in 1998; and Liping Ma, who coined the PUFM “profound under-
standing of fundamental mathematics” in her Knowing and 
Teaching Elementary Mathematics (2010). Other noteworthy influ-
ences are the work of Marilyn Burns, Math Recovery; Les Steffe, 
Anderson Norton, Amy Hackenberg, and Susan Lamon’s Teaching 
Fractions and Ratios for Understanding; NCTM’s The Teaching and 
Learning of Algorithms in School Mathematics (1998); Developing 
Mathematical Reasoning in Grades K–12 (1999); Kazemi and Hintz, 
in their Intentional Talk (2014); Smith and Stein (2011) in their 
Five Practices for Orchestrating Productive Mathematics Discussions 
the textbook Functions Modeling Change by Connally et al. (2000); 
and recently Building Thinking Classrooms by Liljedahl (2021) and 
Rethinking Disability and Mathematics by Lambert (2024). 

We already have many of the foundational elements of 
teaching math better. The last four major standard shifts 
in the United States—“Professional Standards for Teaching 
Mathematics” (NCTM, 1991), “Principles and Standards for 
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School Mathematics” (NCTM, 2000), the “Curriculum Focal 
Points” (NCTM, 2006), and the Common Core State Standards 
(2010) are important moments in recent history that each tried 
to delineate what should be taught when in school mathemat-
ics. The move toward developmental progressions based on 
research was necessary and helpful.

Simultaneously, the National Science Foundation funded sev-
eral universities to create textbooks that were more aligned 
with that current thinking. Textbook series like Discovering 
Mathematics; Investigations in Data, Number, & Space; Math in 
Context; CMP (the Connected Math Project), Everyday Mathematics, 
Math in Context, CORE Plus, and COMAP had many schools and 
teachers trying to get students to investigate and discover math 
that was more in context, using manipulatives, models, and 
technology. Many teachers, who were like the earlier me, tried 
these innovative approaches but didn’t understand why it was 
necessary or what the goal even was. Most importantly, the new 
standards and the textbooks based on them do not account for 
the heavy distortions that most teachers and students operate 
under about the nature of math—for example, the myth that 
one must have the math gene to excel at math or that math 
must be memorized and mimicked.

This book brings together the outstanding research that exists 
and the understanding of the way it has been misunderstood to 
help leaders and teachers navigate where to go now.

A word about research.

It is frankly easy to take two groups of students for a few weeks, 
drill one group and not the other, and then show that the drilled 
group “knows” more. Research like this rarely gives any indica-
tion of how long students will retain what was drilled, or if the 
isolated drilled “knowledge” is weaving well (or at all) into the 
interconnected web of mathematical knowledge needed to fur-
ther support learning. I find this research unhelpful.

The research that I find much more useful consists of those 
studies where researchers create tasks, facilitate them with 
students, learn more about how students learn and the inter-
connectedness of the mathematics, tweak based on the 
results, share what they have learned, and then rinse and 
repeat. These more useful studies show what students know 
long after the initial teaching and how it connects to and sup-
ports future learning. This research helps me as a mathemati-
cian, a mathematics teacher educator, and as a teacher myself 
to better understand mathematics for teaching (Ball, Thames, & 
Phelps, 2008), and how to help teachers and students develop 
as genuine doers of mathematics.
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HOW TO USE THIS BOOK
This book is meant to be read from beginning to end, at least on 
the first read-through. You may be tempted to skip to what looks 
like your grade level, but an essential part of avoiding the traps of 
algorithms is understanding the prior context of what comes before 
your grade level. Once you’ve gotten to your grade level, don’t 
stop there: Understanding how your content affects reasoning 
in the latter grades is also essential to developing mathematical 
reasoning.

There are frequent problem-solving examples throughout the 
book. When you reach one, pause! Think. Solve. Think about 
your thinking. Examining your own thought processes and pon-
dering how your students would react to these problem-solving 
opportunities is a crucial part of making the most of this book. 
Fundamental to the Math Is Figure-Out-Able philosophy is that 
we have to math to learn how to teach math better. You must 
establish the relationship in your own head so you have some-
thing to hang other people’s thinking on.

After a first reading, teachers seeking to hone their skills and 
understanding about their specific subject areas would do well 
to study the chapters covering those topics. Coaches or leaders 
may want to read the whole book multiple times—first from a 
learner’s, then a teacher’s, then a leader’s perspective.

In this book, I use teacher’s and student’s names where I have 
permission and pseudonyms where I do not. I am so grateful 
for the expert teachers who allowed me to work with them and 
their students.

Discussion Questions

1. When you think of math as a verb, math-ing, do you think more of 
reasoning, creating arguments, justifying, critiquing, or do you 
think more of rote-memorizing and mimicking?

2. Do you recall being under any of the three distortions?  
What sparks for you when you read these descriptions?  
Is anything missing? How would you tweak them?

3. Might your colleagues be under any of these distortions?  
How do you know?

4. What are you wondering about as you finish reading this preface?
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CHAPTER 1

Math Is Figure-Out-Able

Anyone like gum?” I ask a class of 28 high school seniors. We are 
about to video classroom interactions to put in my Developing 
Mathematical Reasoning online workshop. This is the warm-up 

the day before, to let me get to know the students, practice pronounc-
ing names correctly, and give students a chance to know what to expect 
when the film crew arrives the next day.

I start with a Problem String, an instructional routine designed to build a 
specific mathematical model, strategy, or concept.

These students are taking a course called Advanced Quantitative  
Reasoning, an alternative to calculus. This likely means these  
students had been fairly successful in their previous courses, 

algebra 2 and precalculus, but did not choose to take 
calculus for their last year of high school math.

“If 1 pack of gum has 27 sticks, how many sticks are in 10 packs?” I ask.

I don’t wait very long for this answer. Maddie replies, “270 sticks.”
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“How about 9 packs? How many sticks in 9 packs?” I ask.

After some think time, Kayla replies, “It’s 243 sticks. Just take away  
27 sticks from 270.”

“How did you do that subtraction?” I ask.

“Take away 30 and give back 3,” she says. I represent that strategy on 
the board, and we briefly discuss it and two other ways students were 
reasoning about 270 – 27.

I follow with, “How many sticks in 100 packs?” and Victor answers 
quickly with 2700 sticks.
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When I ask, “What about 99 packs?” students smile. Not a common 
experience for many teachers when asking 99 times anything.

Mia answers, “Just take away 1 pack. So, 2700 – 27. That’s 2673.”

After a couple of students share how they reasoned through the sub-
traction 2700 – 27, Cameron, sitting right in the middle of the class, 
looking very thoughtful, raises his hand.

“It’s almost”—Cameron pauses—“it’s almost like you want us to use 
what we know to solve these problems.” 

“Yes,” I smile. “Yes, I do.”

Every other student in the room nods thoughtfully, like this is new and 
noteworthy. A realization that is both wonderful and tragic. Wonderful, 
because these students have just experienced what it means to really 
do math. Tragic, because experiences like this should have defined their 
entire math education, not just be featured as a last-minute footnote. 

“Keep using what you know,” I continue. “What if we had 2646 sticks  
of gum—how many packs?”
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Students look at what is being represented on the board and use that 
to reason that 2646 is 54 sticks, or 2 packs, less than 100 packs. These 
students have confidently reasoned that 2646 sticks are in 98 packs, or 
2646 ÷ 27 = 98, without steps, without mimicking.

What students are doing is not a bunch of random mental math tricks. 
These students are developing one of the major strategies that spans 
the operations and makes use of the distributive property—the Over 
strategy. In this case they are multiplying by a bit too much and adjust-
ing back.

It’s focused, purposeful instruction in real math-ing.

Is this what math class looked like and felt like when you were a student? 

I am not advocating that we stop teaching grade-level content,  
making seniors back up to multiplication in isolation. This particular  

Problem String is so good because we can get students reasoning about 
multiplication, work on Additive Reasoning with subtraction, and 

simultaneously build Proportional Reasoning because we’re using a  
ratio table as a model. We can then extend that String to graphing those  

ordered pairs, writing the function to match the data, y = 27x, because the 
number of sticks equals 27 sticks per pack times the number of packs. We 
can also discuss the graphs of related transformed functions, like the line 

containing (1, 28) and (2, 55) or the line containing (1, 26) and (2, 53). There 
is a lot of meat here, real content with many access points to allow students 
to enter the problems and also to challenge all students. You can find more 

examples of Problem Strings that build numeracy into middle and high school 
content in my Building Powerful Numeracy for Middle and High School 

Students (Harris, 2011) and Lessons & Activities for Building  
Powerful Numeracy (Harris, 2014). Also watch for grade-

specific companion volumes I am publishing with Corwin (K–2, 
3–5, 6–8, and 9–12), which I am publishing in order every six 

months, starting with the release of this anchor volume. 
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MATH IS ACTUALLY FIGURE-OUT-ABLE
Worthwhile mathematics teaching is about helping students to 
use what they know to reason through problems, strengthening 
their minds as they grapple with and make sense of increas-
ingly complex mathematics.

The purpose of mathematics instruction is to build students 
who math (Crayton, 2026), not students who are mimicking or 
randomly guessing. Teaching mathematics, mentoring students 
to mathematize (Fosnot & Dolk, 2001a), requires focused direction 
and pedagogical skill that capitalize on students’ existing math-
ematical knowledge and intuition and guide them to develop 
ever more sophisticated powers of reasoning.

Math is not rote-memorizable; math is not random-guessable. 
Math is figure-out-able. 

SWIMMING WITHOUT WATER
Many current math classes operate like learning to swim 
without water.

To learn to swim, a person gets in the water. They begin by 
doggy paddling when they can just barely reach the bottom. As 
they learn strokes, become more confident, and build stamina, 
they swim farther and in deeper water. In many math classes, 
it’s as if students are watching from outside the pool, observing 
people swim and mimicking what they can see above the water, 
but they actually have no idea what’s going on under the water. 
Students are not privy to the thinking going on in a mathemati-
cian’s mind, the choices made along the way, the start and stop, 
try, fail, and correct that happens when doing something new. 
Students are told they’re swimming as they sit on the edge with 
feet dangling in the water, but they never actually learn to swim. 

When students in math classes rote-memorize facts in isolation 
and mimic procedures, they’re being told they’ve learned more 
and more math, but in reality their brains never get any stron-
ger mathematically. Their mathematical reasoning ability isn’t 
growing, only their catalog of memorized facts. These facts are 
essential, but they are not sufficient. 

Mathematical reasoning in this book is not some generalized problem-
solving schema, some fuzzy thinking better. Mathematical reasoning 

includes content—this means that a student reasoning mathematically 
is using mathematical relationships, properties, and models to 

argue, operate, and solve problems and in the process learn more 
mathematics content. You will learn more about this in Chapter 2. 
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Students are told they are doing math as they mimic proce-
dures, carry the 1, cross out the 0, keep change, flip. But they 
aren’t encouraged to see the beauty of a well-formed argument, 
a clever strategy, or a model that illuminates and helps them 
own interconnected relationships. When math students don’t 
know what it means to critique reasoning, logically prove gen-
eralizations, and use what they know using mathematical rela-
tionships, they are not experiencing real math-ing.

Many of us were trained to teach mathematics as rote-memorizing 
steps and mimicking actions without ever engaging in the men-
tal actions that mathematicians use. This is the way most of us 
learned, ourselves. But as Maya Angelou said, “When we know 
better, we do better.” In the sticks of gum Problem String, those 
students were using what they knew and reasoning with math-
ematical relationships, not parroting procedures. Procedural 
mimicry is not doing real math—it’s swimming without water. 
Many of us have been trapped over the years into thinking that 
we are doing the work of mathematics, when in reality we aren’t 
math-ing at all. Mimicking squelches opportunities to develop more 
sophisticated thinking, the doing of real math. 

TRY IT

Consider ways that you have inadvertently done the heavy 
lifting on your students’ behalf, or allowed them to push down 
the metaphorical piano keys but kept them from doing the real 
work of math.

To be clear, I am not blaming individual teachers or schools. I am 
certainly not blaming you. For heaven’s sake, I was the teacher 
who was trying to get students to swim when I didn’t even know 
what swimming was. I used rhymes and sound effects (literally) 
when my students could have been producing actual music. 
This book is my attempt to help you learn what I did, to have the 
epiphanies I did, without the years of research and experimen-
tation it took me. 

This isn’t about blame or shame. It’s about helping you do and 
teach more real math.

When I say math like a mathematician, I don’t mean the math-ing 
that mathematicians do as full-fledged adult mathematicians; I mean 

the way mathematicians mathematized in first grade, fifth grade, 
eighth grade. Over lunch in the dining hall in the Queen’s College at 
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Oxford, several mathematicians who had just heard my presentation at 
the Mathematics Education for the Future Project conference told me 
story after story about how they just ignored the steps their teachers 

showed them. They chuckled as they asked me, “Why would you do 
all those steps when you can just reason through the problems?”

OUR BIGGEST OPPORTUNITY  
FOR IMPROVEMENT
Many math education articles, books, and talks begin with a 
montage of depressing statistics about math achievement—
more specifically, the lack thereof, the dwindling pool of stu-
dents with the math qualifications to follow STEM careers, 
and so on. Most conclude with some flavor of insistence that 
this woeful situation is because our math students’ speed is 
not speedy enough, and their accuracy is not accurate enough, 
then propose ways to fix those problems. Many of the proposed 
solutions describe where teaching should fall on the continuum 
between extreme versions of direct teaching and inquiry. One 
extreme proposes demonstrating to students exactly how to 
solve all the types of problems they will need to solve in a par-
ticular class. The other argues that we should give kids prompts 
and manipulatives and let them explore and discover how to 
solve problems on their own.

Some blame direct teaching for poor student performance: 
“Stop doing that,” they say. “Do discovery, inquiry learning 
instead. It’s more engaging, fun, and real world when students 
do problem-based learning. Get kids some conceptual under-
standing so they’ll be able to do the algorithms better.” These 
teachers might hope that the right combination of exploration 
and engagement will help students understand and learn the 
algorithm better.

Others claim the opposite, that not enough direct instruction is 
happening in the classroom: “Stop trying to get them to discover 
everything—that is fuzzy math, where teachers are making stu-
dents guess at and reinvent math. Why make kids struggle? Just 
tell them how to do it clearly. Have kids memorize the basic 
steps so they can build the more complex math on that foun-
dation.” Teachers on the far end of this spectrum might teach 
math the same way they would teach capital cities in a geog-
raphy class—with flash cards, rhymes, and mnemonic tricks, 
as if there was no underlying logic behind the answers. They 
I-do-we-do-you-do their way through a chapter in a textbook, 
demonstrating algorithms and watching to make sure students 
can do all the steps correctly. 

Chapter 1 • Math Is F ig ure-Out-Able  7Copyrighted Material 
www.corwin.com 



Note that neither party is discussing inventing or leveraging the power 
of algorithms in computing. Algorithms are at their best when they are 

invented by humans, but carried out by computers. The only valid reasons 
for a human to follow the steps of an algorithm by hand revolve around 
figuring out how one works so a variation can be created, or to discover 

why an algorithm is not producing the desired result. Neither of those have 
anything to do with finding the specific answer to a specific problem, which 

is always how they are employed in a K–12 math classroom. Algorithms 
are amazingly powerful mathematical inventions that are essential to 

much of modern technology. That same amazing, ruthless generality and 
applicability are what make them lethal to a learning environment. 

These two approaches feel like opposites, but they share the 
same misguided goal: that students should get answers easily 
and quickly and that the best, most efficient way to do that is by 
repeating algorithms. Procedural fluency, understood as easily 
performing the steps, is the hallmark. Either way, repeating the 
steps of an often inefficient, nearly always opaque, mind-numbing 
algorithm is put on a pedestal as the supreme example of what 
mathematics competency looks like. Where they differ is how to 
teach those algorithms.

I am using terms to describe some muddy philosophies: direct, explicit 
teaching and discovery, inquiry teaching. To make my arguments clear, I 
am caricaturing both, describing the extreme ends of the spectrum. The 
reality is that most often the argument between the two is an unhelpful 

false dichotomy, particularly when algorithms are the goal. I argue 
we need to change the goal. Then the whole conversation shifts.

Let’s follow this to its logical conclusion. If the goal of math class 
is to produce students who produce correct answers, mathe-
matics education could be reduced to a few weeks covering how 
to use generative AI.

Math class in the 21st century cannot be about answer-getting 
(Daro, 2014).

Once we recognize that producing answer-getters cannot be the 
point of math class, teaching algorithms loses much of its jus-
tification. If we change the goal of math class, algorithms as 
teaching tools are no longer the focus.

Our greatest opportunity for improvement lies in removing 
algorithms from the goal of math class. Believing that doing 
math means memorizing and mimicking algorithms, even 
with understanding, is the same as believing that writing the 
steps of a workout would ever be sufficient for getting in shape. 
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That watching someone riding a bike will provide the experi-
ential balance and coordination necessary to actually ride the 
bike yourself. 

Our greatest opportunity for improvement lies in removing  
algorithms from the goal of math class.

Removing algorithms as teaching tools in math education will 
not automatically fix all of mathematics education, any more 
than removing a splinter will heal a wounded foot. But just as 
removing the splinter is necessary for the healing to begin, 
removing algorithm-repetition from the goal of mathematics 
class will shift the conversation about teaching in a way that 
will help us refocus on what matters most: helping students 
learn to think and reason mathematically

FREQUENTLY ASKED QUESTIONS

Q: But, Pam, I learned all of those math-y things because I learned 
the algorithms. When I use an algorithm, I am not mimicking, I’m 
thinking mathematically. We need to teach those algorithms because 
that is how I learned the math I know and learned to think the way  
I do.

A: This is a very tricky conversation. There are subtle things at play 
here. Would you consider . . . Is it possible that you had natural incli-
nations to pick up on patterns and relationships, so that when your 
teacher showed you an algorithm, you created many mental connec-
tions with things in and around that algorithm? And since you did, you 
might now associate all of those self-made connections with learn-
ing that algorithm. The mathematical connections like place-value, 
magnitude, rounding, and friendly numbers might be inextricably 
linked (in your experience) to the steps of an addition algorithm and 
the experience of learning it because you were thinking through the 
steps and making sense of it using your natural talent.

Might you be willing to consider that all of those extra mathemati-
cal connections had less to do with being shown steps to repeat and 
more to do with your natural proclivity to pick up on and use pat-
terns? And if that’s true, might it be possible that you could have 
learned far more, faster, if someone had been actively, purposefully 
helping you develop those connections? If you did it all on your own, 
imagine what you could have done with purposeful, expert guidance.

(Continued)
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BEING TRAPPED BY ALGORITHMS
I want to tell you about a few people I know who were trapped 
by a math education that did not focus on empowering students 
to use what they know to figure out what they don’t know yet. 
This misdirection in math education almost always stems from 
an addiction to algorithms as teaching tools.

At one point in graduate school, I was a teaching assistant for a 
large college algebra class. The 300+ class met three times a week 
in a large hall, and students could visit me during my office hours 
for help with homework and studying for tests. Most of the stu-
dents who came to me were elementary education majors. They 
would lament, “I hate this class! Please help me get through it so 
I’ll never have to take math again.” They had been trapped by an 
exclusively speed-and-accuracy-focused math education.

Years later, elementary and middle school education majors 
in my math methods courses would complete a math 

Mathematicians of old and the random nonmathematician ran into 
the same patterns in life but the mathematician noticed, used, built 
on them. The random nonmathematician did not. You were able to 
do what you did, recognize patterns and make connections when 
presented with an opaque algorithm, without that expert guidance. 
You know that most students can’t do what you did with the same 
(lack of) support. Many of us could not—we bought into what we 
were told: memorize and mimic. And even if we tried to make sense 
of it (pick me), we didn’t have the natural talent to do it without 
those patterns being made explicit.

The question is not whether or not algorithms work as teaching 
tools for most of the population. They just don’t. The question is 
whether or not we can teach most of the population and still give 
advantaged students like yourself what they got from learning 
through algorithms.

The answer is that we can, and we can give students like yourself so 
much more. And the best way to teach it is to high-dose everyone 
with those patterns.

Q: What if algorithms are required in our standards?

A: Great question! I won’t pretend this is trivial, but there are solu-
tions. You can meet your standards and teach real math-ing. This will 
become clearer throughout the book. Keep reading, and we’ll wrap 
it up in Chapter 7.

(Continued)
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autobiography as part of their first assignment. Over 90% of my 
students would introduce themselves as wanting to teach kin-
dergarten, first grade, or maybe second grade because they did 
not believe they could teach fractions. They had been trapped 
into believing they could only teach young grades because of 
their anxiety around mathematics.

One of my goals every semester is to help my students leave my class ready 
and excited to teach the grade level they actually want to teach, not just 
the one they previously thought was the highest math they could teach. 

Each semester it’s one of the best things that happens when students 
happily, confidently report seeking and obtaining those positions.

Kyle Pearce, cohost of the Making Math Moments That Matter pod-
cast and cofounder of the Make Math Moments company, has 
told the story before that he was a university student when 
he realized that he didn’t really understand mathematics. His 
mathematics education had trapped him into thinking he was 
good at math and he was severely disappointed to find that his 
preparation was so insufficient. His powers of memorization 
were good, but he hadn’t developed the complexity of mathe-
matical thought his professor was looking for. Kyle is now a top-
notch coach, math teacher educator, and task designer (Pearce 
& Orr, 2020). 

I myself hit a wall hard in advanced university math courses. I 
had more than a decade of being rewarded for superb speed and 
accuracy, only to have my Abstract Algebra professor tell me, 
“Oh, we don’t do that here,” when I asked him to give me the 
proofs ahead of time: “If you’ll just tell me what proofs will be 
on the quizzes and tests, I will memorize them and spit them 
back out on the assessments perfectly.” He just shook his head. I 
had been trapped by excellent grades for mimicking algorithms 
into believing I was doing real math when in reality I had been 
succeeding at rote-memorizing and mimicking, not math-ing at 
all. I had not developed the sophistication of thinking I needed 
and wanted. 

These are just a few examples of people who have been trapped 
by algorithm-focused math instruction. We’d memorized piles 
of algorithms, but instead of climbing higher with each one, 
we were drowning in more and more disconnected facts and 
procedures. We’d learned, as the Dutch mathematician Hans 
Freudenthal said, that school mathematics is like the “fossil-
ized remains” of real mathematics (Freudenthal, 1973). In being 
taught this way, we’d gained, if anything, the perverse ability 
to get answers without any of the foundation required to make 
use of them.
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WHAT IS AN ALGORITHM?
So let’s make sure we’re on the same page with vocabulary. 
An algorithm is defined as a series of steps to solve any problem 
of a particular kind. It is the same method for every problem, 
regardless of the numbers or structure. All the steps, every time 
(Carpenter et al., 1998; Kamii & Dominick, 1998; Plunkett, 1979; 
wolframalpha.com, 2024).

This definition of an algorithm is almost universal in science, statistics, 
computer science. Over the past few years in mathematics education, 
some people have started to use the word algorithm when strategy 

would be more precise. This muddies the water. See page 23 for 
more on the distinction between algorithms and strategies.

Algorithms are a general solution, which means an algorithm 
can solve even the gnarliest of problems. Algorithms are often 
opaque, where the place-value, magnitudes, and meaning are 
hidden behind the scenes, cleverly embedded so the user does 
not have to deal with the complexities that are occurring. This 
is the beauty, cleverness, and remarkableness of the algorithms. 
It is also what makes them terrible teaching tools.

The algorithms I refer to as the traditional algorithms and use as 
examples in Chapters 3–6 all share the commonality that they 
can be counted on to reduce any problem of a type to single-digit 
arithmetic. For example, the traditional North American mul-
tiplication algorithm will turn any multiplication problem, no 
matter how many digits are involved, into a series of single-digit 
multiplication and single-digit addition problems (see Chapter 4). 
This is very powerful, but also inherently limiting.

Memorizing one algorithm is usually no help with memorizing 
the next one. Knowing the steps of a traditional multiplication 
algorithm will not help with memorizing the steps of the tradi-
tional long division algorithm.

This means that for many students math class becomes increas-
ingly frustrating and difficult to manage. As they progress 
through the grades, what they learned last year does not help 
them understand what they are learning this year.

Because students do not actually have to understand what is 
going on to perform the steps, students can use less complex 
reasoning than those problems could help develop. “Fantastic!” 
critics cry. “Students will be able to do so much math without 
really having to deal with the complexities (i.e., learn anything). 
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This is a desired outcome! More students doing more math. 
Who wouldn’t be in favor of that?”

But students using algorithms are only mimicking more math. As 
Liljedahl (2021) observed in his book Building Thinking Classrooms, 
“Everywhere I went I saw the same thing—students not think-
ing and teachers planning their teaching on the assumption 
that students either couldn’t or wouldn’t think” (p. 12).

Our goal in teaching mathematics cannot be to make things 
easy, particularly if it means sacrificing long-term growth for 
short-term answers on homework and test scores. If that was 
acceptable, we could hand out the answer key and call it a day. 
We as teachers know this instinctively. Some amount of strug-
gle is necessary for learning. But that does not mean all struggle 
is useful or created equal. Struggling to memorize and mimic 
is effort spent now for more confusion later. Grappling with and 
making sense of real math pays huge future dividends. Real 
math is knowledge that builds on itself.

TRY IT

Think about the algorithms that you teach your students. 
Having that list in the forefront of your mind will be useful as you 
continue to read.

Our world needs thinkers and reasoners, so our world needs a 
math class that trains thinkers and reasoners. Liljedahl (2021), 
who encourages us to Build Thinking Classrooms, said, “My goal 
from the outset was to get students to think. . . . Thinking is a 
necessary precursor to learning, and if students are not think-
ing they are not learning” (p. 296).

That is why I object to using algorithms as teaching tools. As 
Hurst and Huntley (2018) found, “most students in [their] sam-
ple are ‘prisoners to procedures and processes’ irrespective of 
whether or not they understand the mathematics behind the 
algorithms.”

Algorithms are amazingly powerful mathematical inventions 
that are essential to much of modern technology. The issue is 
that the skill of developing and finding uses for algorithms is 
vastly different from the skill required to follow the steps of an 
individual algorithm. The former can program a computer to 
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land a rocket on the moon; the latter can be replaced by that 
50-year-old computer landing that rocket on the moon.

The ability of a human mind to create an algorithm is amazing; the ability 
of a computer to execute an algorithm is revolutionary; and the damage 

done by using algorithms to teach mathematics is incalculable.

FREQUENTLY ASKED QUESTIONS

Q: But mathematicians use algorithms, right? So if we want our 
students doing math like mathematicians, our students should 
be using algorithms, right?

A: In a study where mathematicians were given problems to solve, 
they used an algorithm only 4% of the time. That means that 96% 
of the time mathematicians reasoned through the problems, using 
relationships they know. Mathematicians create algorithms, study 
algorithms, compare algorithms. They don’t use them to compute 
(Dowker, 1992). 

Q: What if my standards require algorithms?

A: The short answer is that in most circumstances you can meet your 
standards and avoid the trap of algorithms. The longer answer is in 
Chapter 7 and will make more sense after reading Chapters 2–6.

Q: Why do you refer to the standard algorithms as traditional  
algorithms?

A: There is nothing standard about the algorithms that have 
become traditional. The word standard denotes “one and only” and 
gives too much weight and credibility. People are often shocked to 
find there are several different algorithms commonly in use around 
the world. My mother grew up in Switzerland and does division com-
pletely differently than what I learned. The subtraction algorithm 
my eldest son independently created in second grade is the same 
as the method taught in many Latin and South American countries. 

CONFUSING LOGICAL-
MATHEMATICAL KNOWLEDGE  
FOR SOCIAL KNOWLEDGE
By now you are probably wondering why teaching algorithms 
evolved as the way to solve problems in math class. To answer 
this question, let’s parse out the difference between social/ 
conventional knowledge and logical-mathematical knowledge.
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Child development psychologist Jean Piaget suggested there are 
three types of knowledge (Piaget, 1974):

1. Physical knowledge: The understanding of the 
physical world.

2. Logical-mathematical knowledge: The understanding 
of being able to solve problems and perform analytical 
reasoning.

3. Social knowledge: The understanding of societal norms and 
conventions.

The last two types are important when we discuss learning 
math: logical-mathematical knowledge and social knowledge.

The trouble in math education is that we have a history of treat-
ing mathematics as all social knowledge. In reality, most of 
mathematics is logical knowledge. Next, let’s make sense of the 
difference and how they both are best taught.

Historically, mathematics was only for wealthy individuals who could afford 
expensive educations. Throughout history, math-y people had developed 

mental relationships that culminated in really cool general algorithms. As 
education democratized, schools tried to bring math to everyone. Schools 
did so with textbooks that lifted those algorithms from that body of work 
and handed them to teachers and students as if the algorithms are all the 

math there is to learn and not one small application of it. The resulting 
misalignment of scope resulted in the limiting idea that answers are the 

best evidence of learning math. That has been passed down, and over time it 
became the picture of what math is. Even today, as people write scope and 

sequences, lessons, and textbooks, they tend to cut up the interconnected web 
of relationships into tiny memorizable pieces, making mathematical ideas into 

falsely linear sequences, giving all things equal weight, and making it all about 
answer-getting. That put us very far away from what math-ing actually is.

Before, we just didn’t know how to pull back the curtains and help students 
develop mathematical reasoning. Now, we do. To learn how, read on!

SOCIAL KNOWLEDGE
Social knowledge is that which we deem to be so.

Another way to say this is that someone suggested social 
knowledge as knowledge, and over time by convention we all 
adhere to that idea. In math, there is a small set of things that 
must be told—they cannot be figured out. This set consists 
mostly of vocabulary and notation that history has tapped as 
the way to say it or write it. Given that these conventions are not 
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figure-out-able, students would only be able to guess, and more 
often than not they would guess incorrectly.

For example, we cannot ask students to reason to find the name 
of a four-sided polygon (many angled figure). If they use pat-
terns, 10-sided is decagon, six-sided is hexagon, five-sided is 
pentagon, so surely a four-sided polygon is called a quadagon? 
A fouragon? Squareagon? Oh, actually we have the tradition of 
calling them quadrilaterals (four-sided figures). We can’t reason 
our way through tradition. Good grief! What is a three-sided 
polygon called? A tri-ilateral? A thrice-agon? (See Figure 1.1.)

FIGURE 1.1   Social Knowledge Versus Possible Figure-Out-Able Names  
for Common Shapes

Actual
Names

Possible
Deduced

Names

Triangle

Triagon

Quadrilateral

Quadragon

Pentagon

Pentalateral

Hexagon

Sexalateral

Heptagon

Sevangle

Octagon

Octalateral

Notation is another example of social knowledge. For 
example, parentheses mean multiplication, 3(4) = 12, 
except when they don’t:

•	 f(x),
•	 f -1(x)

•	 the point (2, 3)

•	 interval notation (–∞, –2)

We can’t figure out what the notation is supposed to 
mean without some social help. Students could guess, 
but they’d likely guess incorrectly because there is no 
way to logically reason or use what they know.

Let’s not make students guess about the parts of mathe-
matics that are social knowledge. This set of knowledge 
is the things we should purposefully tell students with 
intentionality and straightforward clarity.

TIP

Teach vocabulary just 
in time, not just in 
case. When you teach 
vocabulary just in 
case, students learn 
lists of terms and 
definitions beforehand, 
in case they will need 
them. Rather, teach 
vocabulary just in 
time. Give students 
experiences where 
they are begging for a 
way to describe what 
they are thinking 
about and dealing with. 
Teaching just in time 
means hanging terms 
on already constructed 
logical-mathematical 
knowledge.
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LOGICAL-MATHEMATICAL KNOWLEDGE
Most of mathematics, however, is logical-mathematical knowledge—
that which must be experienced, connected, reasoned, figured out 
in order to actually learn, own, and use meaningfully. To reason 
mathematically, these things cannot simply be told, memorized, 
or mimicked. The best way to teach students mathematics is to 
teach them to mathematize, to do the kinds of thinking involved 
in math-ing.

This logical-mathematical knowledge is the power to see 99 × 675 
and, rather than funneling into an algorithm of steps to parrot, 
instead use Multiplicative Reasoning to recognize that 99 groups 
is one less than 100 groups, and therefore the answer is one less 
675 than 67500. 

Such connections are everywhere in mathematics, even in 
areas you might think right now can’t possibly be figured out. 
We know this bit of math because someone figured it out in the 
first place, then created the algorithm we might think is the 
only way to solve it. We know this because such connections 
define what mathematics is.

Are there parts of 99 × 675 that are social knowledge? Yes, the 
look of the numerals and the multiplication symbol are social 
knowledge, and that is a fruitful teacher discussion—the parts 
of math that must be told and the parts that must be experi-
enced and worked through with logic. I invite you to consider 
that the set of things that are social knowledge in mathematics 
is far smaller than we have been led to believe.

This conversation is in part difficult because so many of us were 
taught math as all social knowledge: Wait to be told what to do, 
then rote-memorize and mimic everything.

If we are teaching a part of mathematics with a mnemonic,  
rhyme, or story, we are treating it as social knowledge—

that which must be told and memorized.

UNPACKING THE CONFUSION
Learning the names of rivers that traverse a country or all 50 
capital cities in the United States is social knowledge. These 
things must be rote-memorized.

What about multiplication facts? Is something like 7 × 4 social 
knowledge? Pause here. Take inventory of what you think. 
Are multiplication facts something to be clearly told and then 
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rote-memorized (social)? Or are they to be connected and rea-
soned about (logical-mathematical)?

Multiplication facts are not like the random names of polygons, 
rivers, or capital cities. They are internally consistent and logi-
cally built from each other. Eight groups of eight, 8 × 8, is 64, and 
one more group of eight, 9 × 8, is 72, and 64 + 8 = 72. But a student 
might never realize those connections if they are instructed to 
rote-memorize each fact. Imagine what a student thinks about 
the facts if they “learn” the facts as is suggested in a “learning” 
video program I encountered on YouTube. I’ve summarized a 
part of it for you as follows:

Learn 7 × 4 in under 10 minutes! All you have to do is 
memorize this story. Mrs. Week (7) sits on a chair (4). 
She goes fishing and catches 2 boots and 8 fish. You got 
it: 7 × 4 = 28.

The video even instructs students to not remember the story 
wrong—she didn’t catch 8 fish and 2 boots. Suggesting that  
2 boots and 8 fish is not the same as 8 fish and 2 boots sends 
the message that this is all arbitrary and that addition is not 
commutative. It also sends the message that 28 is made up of 
2 and 8, not 20 and 8. This is a prime example of sacrificing 
your future multiplicative reasoning self for a current third-
grade story repeater. Sure, some kids will rote-memorize facts 
more easily with a story. But then that’s all we get—students 
repeating nonsensical stories pretending they are doing math. 
Consider the chance students have to understand fractions if 
they believe multiplication facts are arbitrary, disconnected, 
random vocabulary. They are trapped.

To help explain the prevalent obsession with rote-memorizing 
multiplication facts, consider this. When many of us were learn-
ers in the midst of performing the multiplication algorithm 
over and over again, it became painfully clear that crunching 
through each of those problems was easier if you had the 
single-digit facts at your fingertips. This striking and strong 
memory leads us to think, “To help students, let’s make sure 
that they rote-memorize all of those facts.” In our embodied 
memory of our student experience, we didn’t need to under-
stand more, so an alternative was not even on our radar.

Of course, we want students to know their multiplication facts! 
But the mathematical reality is that students need to more 
than know them. Students need to travel the mental path of 
figuring the facts often so that those paths become well trav-
eled. Once we can get students reasoning using the connec-
tions between multiplication facts, they learn those facts and 
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the ones those facts connect to and they develop Multiplicative 
Reasoning at the same time. “Providing students with oppor-
tunities to think about things differently, find similarities and 
differences, and evaluate which approach is best, all enhance 
the brain’s construction of new learning” (Jensen & McConchie, 
2020, p. 175). Multiplicative Reasoning is the goal. As we develop 
Multiplicative Reasoning, owning the facts becomes a natural 
by-product.

Multiplication facts are one of the first opportunities to help stu-
dents develop Multiplicative Reasoning. Multiplicative Reasoning 
looks like finding 9 × 8 by thinking about 10 × 8 = 80, but since 
that’s too much, removing one 8, for 72. This helps with think-
ing about things like 49 × 6 by thinking about 50 × 6 = 300, but 
since that’s too much, removing one 6, for 294. “This kind of deep 
dive into the learning ensures the brain understands the wider 
or deeper context and not just isolated or rote facts” (Jensen & 
McConchie, 2020, p. 175). This reasoning Jensen and McConchie 
describe is logical-mathematical and essential for everything 
that comes afterward, like fractions, proportions, functions, etc. 
Chapter 2 will continue to illuminate how to develop reasoning.

The issue with memorizing multiplication facts the same way 
you would memorize capital cities in a geography class is that 
mathematics class is not a geography class. Rivers, mountain ranges, 
capital cities’ names are social knowledge. To know these is to 
memorize. The multiplicative connections and relationships 
between facts are logical-mathematical knowledge. To know 
these is to math.

HOW TO TEACH
If everything in mathematics were social, then we would clearly 
need to tell students all of it.

This just isn’t the case.

Most mathematics is not social knowledge. And because most 
mathematics is not social knowledge, it is unhelpful to give pro-
cedures and hope students guess at the reasoning underlying 
them when it is the reasoning that is important. Students will 
get answers, but they probably won’t build reasoning.

We need to approach the teaching of mathematics with the 
recognition that most of the material is logical, adheres to pat-
terns, and can be deduced from other knowledge that is already 
understood. This does not mean that students should do all of 
the connecting on their own—I am certainly not an advocate 
for unfocused, anything goes, fumbling, fuzzy math teaching.
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While these essential, extremely powerful connections are 
everywhere in mathematics, that does not mean they are so 
obvious that students should be left to their own devices to dis-
cover them. I’m not advocating that we turn classrooms into 
directionless vacuums, where students are left to their own 
devices to forage for math. 

Students benefit from a “more knowledgeable other” (Vygotsky, 
1978) in a classroom where teachers are the guides who craft 
experiences, give feedback, mentor, and support every student 
mathematician. Students need teachers who assess what fledg-
ling knowledge students already have and help students build 
on that prior understanding. Not as a minor item on a checklist 
before a lesson but as the foundation on which the entire class-
room experience is built. They need teachers who know the 
mathematical relationships and how to help students develop 
these relationships and connections for themselves.

Kim Montague, my pithy cohost on the Math Is Figure-Out-Able 
podcast, gives us the challenge to “Know your content, know your kids.” 

(Montague, 2021) This is not just a side-note, catchy phrase. Knowing 
your content and knowing your students are the bedrocks on which we 

build the foundation of our math classes. Most of this book is to help you 
build your content. Equally important are knowing your kids, assessing 

what they know, how they learn, what motivates them, their culture, and 
their interests. Giving your students open enough tasks so they all have 

access, and they are all challenged in appropriate ways, is the exciting and 
important work of building on the content with which they come to you. 

Efforts at discovery-based teaching frequently end up with 
kids doing the best they can alone trying to guess what’s in 
the teacher’s head. That can feel callous, and it is not helpful. 
Often that triggers a reaction of frustration from parents and 
colleagues: Why hold back on students? Just tell them the things. Don’t 
make them reinvent math—just tell them what to do in the clearest 
possible way. Give them plenty of practice to make that mimicking stick. 
As teachers we might be lulled into a false sense of security, 
believing that if students are getting answers, and parents are 
happy, everything is fine. We might also believe that all math 
is social knowledge. Therefore: tell, memorize, mimic, practice 
mimicking.

Except, as we’ve just discussed, everyone is not fine when 
students are rote-memorizing and mimicking, fake math-ing. 
Even the “successful” students quickly find that the “math” 
they’ve learned is nearly useless outside a fake math class-
room. Students’ mimicking muscles are getting a workout, but 
students’ mathematical reasoning abilities are staying stagnant 
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or atrophying. Many of us—teachers and parents—are unknow-
ingly perpetuating a fake math myth.

If we clearly understand the parts of mathematics that are 
social versus those that are logical-mathematical, deciding how 
to teach each part is simple: Construct most of mathematics by 
mathematizing with students, giving them experiences so their 
brains can make the connections. Tell only the small set that is 
social knowledge (see Figure 1.2).

FIGURE 1.2  A Decision Tree to Inform Teaching Practices

Can it be
logically deduced

from related
and relevant
knowledge?

This is social
knowledge

Must be rote-
memorized

This is logical-
mathematical

knowledge

No

Yes

Must be
learned
through

experience

Tell, ideally
just in time

as students need it

Give students
experience grappling

with and making
sense of

It is real work to learn to differentiate between what is social 
and what is logical, between the arbitrary words and notation 
we’ve chosen and the real depth and expanse of mathematics. 
Between what is window-dressing we only need for communi-
cating with each other and what is figure-out-able. 

But that’s why you are reading this book, right?

WHAT IS MATHEMATIZING,  
MATH-ING?
What does it look like and feel like to mathematize, to math the 
way a mathematician maths?

Fosnot and Dolk (2001a, 2001b, 2002, 2010) in their Young Mathematicians 
at Work series have a chapter titled “Mathematics or Mathematizing?” 

in which they discuss the purpose of mathematics education. And Crayton 
(2026) is one of those who has made math into a verb: math-ing. Freudenthal 

suggested, “What humans have to learn is not mathematics as a closed 
system, but rather as an activity, the process of mathematizing reality and if 
possible even that of mathematizing mathematics” (Freudenthal, 1968, p. 7).

Chapter 1 • Math Is F ig ure-Out-Able  21Copyrighted Material 
www.corwin.com 



Here’s a glimpse into mathematizing: What is 99 plus anything? 
What is 99 times anything?

Think about the problem 99 + 47. How do you reason about  
that sum?

•	 Could you think about 100 + 47? Add a bit too much, 
so adjust one back?

•	 Could you think about one more plus one less, 100 + 46? 

We can use both of those strategies to reason about 99 
plus anything.

Think about the problem 99 × 47. How do you reason 
about that product?

•	 Could you think about 100 × 47? That’s too much, so adjust 
one group back?

We can use this over strategy to reason about 99 times anything.

These are examples of using what you know, adding 100 or mul-
tiplying by 100, to reason through a problem. This is the work 
of mathematizing, of math-ing. This kind of work strengthens 
your brain and builds your capacity to deal with more complex 
ideas and relationships (see Figure 1.3).

TIP

When you see problems 
like these in the book, 
solve them before you 
read on. Getting a sense 
of the relationships 
involved will help 
you make sense of 
the commentary 
that follows.

FIGURE 1.3  The Work of Math-ing

Wonder/imagine
some perturbation

Refine, generalize, formalize
when/how to use/not use

Notice (new)
patterns

Use the relationships
experiment, validate, play, exercise

Mathematics teaching at its best means to give students some-
thing mathematically important to think about, where they 
can wonder and imagine. This leads to helping students notice 
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patterns that students can use to experiment, validate, play, 
and exercise their fledgling ideas. With expert teaching help, 
they can then refine, generalize, and formalize their think-
ing about when and how to use or not use the relationships, 
which leads to the opportunity to wonder about new things on 
their horizon.

We can mentor students to mathematize by helping them 
develop such mathematical strategies.

FREQUENTLY ASKED QUESTIONS

Q: You just used the easy number 99. Of course, you can reason 
with such easy numbers. What about all the other numbers? 
Don’t we need algorithms for those numbers?

A: No. For any number or problem that is so complicated that you 
might need to reach for an algorithm, you could instead reach for a 
calculator. The major mathematical strategies that I outline in this 
book give students access to enough problems. That’s why these 
strategies were chosen: to build mathematical reasoning and to 
give students power over enough problems. For more discussion on 
problems that are worth solving without a calculator, see Chapter 7.

WHAT IS A STRATEGY?
We just discussed a strategy of adding or multiplying by 99. But 
what is a strategy? Using a strategy means letting the numbers 
or structure in a problem influence how you solve it. Your strat-
egy is how you use the relationships you already know to solve 
a problem. It means you don’t use the same method for every 
problem because the numbers are not the same, and that you 
use only what you need to solve the problem, not someone’s 
prescribed steps (Fosnot & Dolk, 2001a; Fosnot & Dolk, 2001b; 
Wright et al., 2006). Where algorithms are often opaque (diffi-
cult to see what’s happening behind the scenes), strategies are 
transparent because you are using relationships you know to 
reason through the problem.

Mathematical strategies are approaches to problem solving that 
are distinguished from each other by the underlying under-
standing of mathematics required to use them. These strategies 
are the ways that naturally math-y people use the patterns they 
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intuitively notice. Just because the rest of us did not pick up and 
use the patterns on our own, does not mean that we cannot. We 
can all benefit from deliberate, higher doses of the patterns.

Unlike algorithms, learning strategies are synergistic. Where 
each new algorithm to memorize is another series of steps to 
potentially misremember and confuse with each other—was 
it keep, change, flip, or keep, change, change?—strategies are 
mutually reinforcing. The more relationships you own, the more 
strategies you learn, which in turn builds more relationships. 
This positive feedback cycle is what learning real math-ing is 
all about.

For example, there are four major subtraction strategies that 
represent the mathematical relationships a student needs to 
own. To be clear, I’m not advocating learning four different algo-
rithms instead of one. Decades of classroom experience have 
shown that building strategies, by leveraging and developing 
student intuition instead of destroying it, takes far less effort 
individually and pays far more dividends than even one algo-
rithm required to solve the same class of problems.

Unlike traditional algorithms, major strategies do not reduce 
problems to single-digit arithmetic. While this sounds like a 
weakness, it is actually a massive learning advantage. It enables 
strategies to take advantage of what students already know 
beyond the most basic of single-digit operations. Instead of 
reducing 120 × 9 to a long series of single-digit problems, we can 
leverage what we’ve learned in math class since third grade to 
instead solve 120 × 10 = 1200, and 1200 – 120 = 1080. The former 
stops building brains the moment single-digit operations are 
conquered, while the latter lays the foundations for proficiency 
of fractions and Proportional Reasoning.

FREQUENTLY ASKED QUESTIONS

Q: But traditional algorithms are so efficient and save time, 
right?

A: If the argument is that algorithms save time because a student 
uses one way to solve a problem every time, then we’re not consid-
ering the time spent teaching and practicing these algorithms. We’re 
also not considering the time lost in a year remediating students who 
are unable to mimic these procedures, the years lost in a student’s 
mathematical journey because they quit math, misunderstanding 
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what mathematics really is. By contrast, strategies are natural out-
comes of relationships students need to own. They are extensions 
of the mathematical properties that are at the heart of mathemat-
ics. Strategies offer students choice so they are able to consider 
which relationships they want to work with rather than waste time 
attempting to remember an algorithm they never understood. 
Given any problem that’s reasonable to solve without a calculator, 
we can be as efficient as a traditional algorithm or, most of the time, 
more efficient. Many examples of this efficiency of strategies follow 
in the rest of the book.

Q: It sounds like you’re not advocating for direct instruction or 
inquiry. What are you advocating for?

A: I’m advocating for a shift in goals—from mimicking algorithms 
to developing mathematical reasoning (which includes content). 
With that new goal in mind, teaching then becomes: good guided 
inquiry for everything that is logical and clearly telling for the bit 
that is social. Teachers have clear goals: help students grapple long 
enough; guide students to important generalizations through pur-
posefully crafted discussions; anchor learning; and keep building 
on that learning to move the mathematics forward using open 
access enough tasks that all students continue to have access and 
continue to be challenged. By doing this, students are not just 
solving problems correctly and efficiently, but also more sophis-
ticatedly. This allows students to be more successful longer. More 
on this in Chapter 2.

For any problem that’s reasonable to solve without a  
calculator we can be as efficient as a traditional 
algorithm or, most of the time, more efficient.

Conclusion

The purpose of math class is to develop mathematical reasoning, not 
mathematical answer-getting. What we need are not mere calculators 
but thinkers, do-ers of mathematics to solve problems we have yet to 
encounter. Our role as teachers is to guide and support students as they 
develop their mathematical reasoning, not rotely mimic algorithms 
that only provide answers to existing problems. Knowing the traps of 
algorithms empowers us to make other choices.
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Discussion Questions
1. What is the difference between an algorithm and a strategy? 

The book will further differentiate these, but what are your 
current thoughts?

2. What is the difference between logical-mathematical knowledge 
and social knowledge?

3. What is an example of a bit of mathematics that is social 
knowledge and therefore told to students? Do you and your 
colleagues agree on this?

4. How were you taught the multiplication facts, as logical-
mathematical or social knowledge? How did that affect your 
perception of the nature of mathematics?

5. What do you think of math as a verb? What does it mean to 
you to math?

TRY IT IN YOUR CLASSROOM 
99 Plus Anything

Purpose

The purpose of this short interview is to become more aware of the 
strategies many people use intuitively. It also gives you the opportu-
nity to practice your questioning and listening skills, and your parsing 
of people’s mathematical thinking. Seek to pull out people’s reason-
ing, teasing out what they mean. Ask, don’t tell.

This can be quite challenging if:

 • you’re used to listening solely for correct answers or correctly 
mimicking steps

 • you’re like I was, with the algorithm as the sole method you use 
to solve problems

 • you have yet to try to figure out other people’s alternative 
strategies

Use these interviews to open your horizons in a low-stakes environ-
ment. Just have fun!
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Routine

 - Interview several people (your family, neighbors, community 
members, students, colleagues, anyone willing).

 - Ask, “What is 99 plus anything?”

 - If the person is confused, clarify, “What is 99 plus any number?”

 - If more clarification is needed, add, “Pick an ugly number.” 
(Smile when they choose a number that ends in 7) and ask, 
“What’s 99 plus your [37]?” 

 - Listen, watch, ask to hear what’s happening in their head.

 - Try to repeat back to them what they did, putting your own 
words to their strategy.

 - Try their strategy with a different number and ask them if you 
understood their thinking.

Important to Consider

Make this a casual conversation, not an interrogation. You don’t want 
students, friends, and family members to feel like they’re on the 
spot, especially if they are in front of their peers. Reassure them by 
suggesting that you’re practicing learning how people think about 
math-y things when they’re not necessarily trying to please a math 
teacher, the way they would actually reason. Ask clarifying questions 
until you understand what they are thinking. If they start to tell you 
about an algorithm, don’t make them explain those steps. Instead, 
gently probe for what they might do without those steps.

Some people may add the tens, add the ones, then add those sums. 
Others may use an over strategy, finding 37 + 100 and adjusting back 
1. Some people may give and take, taking 1 from the 37 to give to 
the 99, making an equivalent problem, 36 + 100.

Extension

Depending on the age or experience of your interviewee, you could 
ask any of the following:

 • 9 plus anything

 • Anything minus 9

 • Anything minus 99

 • 9 times anything

 • 99 times anything

 • Adding 9 
9

10 to anything
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